
O P I N I O N A R T I C L E

Leveraging nature’s backup plans to incorporate
interspecific interactions and resilience into restoration
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Interspecific interactions are important structuring forces in ecological communities. Interactions can be disturbed when
species are lost from a community. When interactions result in fitness gains for at least one participating organism, that
organism may experience reduced fitness as a result of interaction disturbance. However, many species exhibit traits that
enable individuals to persist and reproduce in spite of such disruptions, resulting in resilience to interaction disturbance. Such
traits can result in interaction generalization, phenotypic and behavioral plasticity, and adaptive capacity. We discuss examples
of these traits and use case studies to illustrate how restoration practitioners can use a trait-based approach to examine species
of concern, identify traits that are associated with interspecific interactions and are relevant to resilience, and target such traits
in restoration. Restoration activities that bolster interaction resilience could include, for example, reintroducing or supporting
specific functional groups or managing abiotic conditions to reduce interaction dependence by at-risk species (e.g. providing
structural complexity offering shelter and cover). Resilience may also be an important consideration in species selection for
restoration. Establishment of resilient species, able to persist after interaction disturbance, may be essential to restoring to a
functioning ecological community. Once such species are present, they could help support more specialized species that lack
resilience traits, such as many species of concern. Understanding the conditions under which processes linked to resilience
may enable species to persist and communities to reform following interaction disturbance is a key application of community
ecology to ecological restoration.
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Implications for Practice

• Many species display traits that confer generalization,
plasticity, or adaptive capacity, making them resilient to
disruption of key interactions upon which they depend.

• Identification of such traits in restoration planning, using
the decision tree provided here, can enable restoration
activities to take advantage of and leverage these traits.

• Planning for interaction recovery and improved resilience
should increase restoration efficiency and effectiveness.

Introduction

Interaction disturbance, a specific class of ecological distur-
bance, refers to the disruption of interactions between a given set
of species (Brodie et al. 2009; Aizen et al. 2012). Such distur-
bances can be disruptive to both partners and the communities
in which they are embedded. Many organisms, however, exhibit
traits that confer reduced dependence on interaction partners.
These traits may increase resilience in the face of interaction dis-
turbance: that is they may boost the probability that populations
or processes persist following disturbance (in effect, absorb-
ing the disturbance) (Holling 1973) (Fig. 1). As an example,
certain Central American plants with hard, large seeds were
likely dispersed by now-extinct Pleistocene megafauna (Janzen

& Martin 1982), and extinction of such megafauna left no poten-
tial dispersers among the native fauna, resulting in seed disper-
sal disruption for these species. The introduction of livestock
to Central America has inadvertently restored the function of
seed dispersal for these species because the seeds are able to
be dispersed by non-native livestock in addition to their his-
torical dispersers (Janzen & Martin 1982). Fruit and seed traits
attracting livestock thus confer resilience to interaction disrup-
tion for those species. In ecological restoration, recognizing
factors contributing to resilience may enable practitioners to
identify species and processes that are poised to recover from
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Interspecific interactions and resilience

Figure 1. Conceptual model of the relationship between interaction disturbance, resilience, and restoration. A given system originates in ecological state 1,
represented by the position of the ball in the diagram as (A). Interaction disturbance (B), by altering the populations and processes in the ecosystem, can
propel the system into a new ecological state (C). Traits of the species involved in the interaction can dictate the resilience of the interaction (represented as
the height of the hill, D), or how likely it is to return to its former state following the disturbance. Community-level restoration can work to return the system
to its previous state via pressure exerted across the system trajectory (E). Individual-level restoration can leverage traits to boost inherent resilience factors
(F), thus in effect elevating the height of (D).

interaction disturbance versus those that will remain in a new
state, with the potential to alter the broader systems in which
they occur (Biggs et al. 2012; Lake 2013; Alday & Marrs 2014)
(Fig. 2). Resilience pathways may then be leveraged or bolstered
in restoration planning.

Disturbance of interactions is distinct from disturbance of
ecosystems or full communities, although interaction distur-
bance may cascade up to these higher levels. An awareness
of this distinction is important for restoration incorporating
resilience theory (Fig. 3). Community-scale disturbance often
affects sites that have experienced some sort of natural or anthro-
pogenic physical disturbance, such as a fire, flood, treefall,
mine, and so on. Disturbance of interactions, however, is often
more subtle. Overhunting that removes large predators or seed
dispersers while leaving most other species undisturbed is an
example (Terborgh et al. 2008; Estes et al. 2011). In such cir-
cumstances, disturbed interactions appear likely to alter species
assemblages over time (Terborgh et al. 2008) and could impact
communities by, for example, resulting in dominance by dif-
ferent taxonomic and functional groups in systems lacking
interactions versus intact systems (Tabarelli et al. 2010). In
this way, disturbance that impacts interactions may alter net-
works of interacting communities, impacting population sizes
and eventually biodiversity (Redford 1992). Interaction net-
work analysis allows visualization and analysis of these dynam-
ics, indicating which species interact and with what frequency
(Bascompte & Jordano 2013). Through network analysis, it has
become clear that interaction networks are often highly nested,
wherein specialized species (i.e. those that interact with a sin-
gle or very small number of partners) interact with generalized
species (i.e. those that interact with large numbers of partners),
a dynamic that confers stability to the network (e.g. Verdú &
Valiente-Banuet 2008). Losses of particular species can alter

the interactions between others, a process known as rewiring
(Ramos-Jiliberto et al. 2012), with the potential to impact other
species in a variety of ways.

An understanding of the importance of species interactions
is becoming a central part of modern restoration ecology (Holl
et al. 2000; Young et al. 2005). Techniques for on-the-ground
application of this understanding are currently emerging (Fraser
et al. 2015). Certain traits may make populations and processes
less vulnerable to interaction disruption, whereas populations of
species that lack these traits may be more at risk and could be
placed on extinction trajectories as a result of interaction dis-
turbance (Valiente-Banuet et al. 2015). Active restoration may
be necessary for such at-risk species. We discuss some of the
key traits that may result in resilience of populations and pro-
cesses to interaction disturbance, illustrating the relevance of
such traits with examples from a wide diversity of systems and
taxonomic groups. We provide case examples of restoration
work that take into account interaction disturbance and rele-
vant species traits, demonstrating the capacity of practitioners to
leverage these traits to effectively restore populations and pro-
cesses. Finally, we discuss steps to integrate interactions and
resilience to interaction disturbance into restoration planning.
We provide a decision tree to guide readers through this process
(Fig. 2), and translate these community ecology and resilience
concepts to active restoration decision making (Fig. 3).

Species Traits Related to Interaction Disturbance
Resilience

Traits related to generalization, plasticity, and adaptive capacity
may contribute to interaction disturbance resilience. Generaliza-
tion occurs when species are capable of interacting with a vari-
ety of partners that are at least somewhat functionally redundant
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(a)

(b)

Figure 2. Decision tree guiding restoration practitioners through the
process of recognizing when a target species exhibits traits that may confer
inherent resilience to the effects of interaction disturbance. When it seems
likely that inherent resilience is present, restoration practitioners can work
to leverage and support that resilience, supporting existing ecological
processes likely to return populations to their pre-disturbance state.
However, when traits that confer resilience to interaction disturbance are
lacking, the target species may only persist in the face of disturbance if its
populations are actively and continually supported by conservation effort.
We illustrate this decision tree with a simple example: loss of riparian
vegetation in the central Sonoran Desert has decreased the relative
availability of hummingbird plants (a), possibly contributing to nest
failures in some regions (S. Wethington 2012, Hummingbird Monitoring
Network, Patagonia, AZ, U.S.A., personal communication). However,
hummingbirds are generalist feeders, able to obtain nectar from a diversity
of potential plant species rather than from a single or limited suite of
partners. Restoration that includes planting of tubular, nectar-providing
flowers (b), even as substitutes for species no longer available, is likely to
assist hummingbird population persistence, taking advantage of the
hummingbirds’ generality and inherent resilience to losses of particular
nectar plant species.

(i.e. they do not depend on a single partner due, e.g. to traits
emerging from coevolution with that partner). Phenotypic plas-
ticity, or variability in morphology or behavior, can confer gen-
eralization by allowing species to partner-switch or can enable
species to persist in the complete absence of interactions. Adap-
tive capacity, the underlying genetic variation allowing for rela-
tively rapid evolutionary response, may enable species to evolve
the traits required to persist following interaction disturbance.
We explore each of these mechanisms of resilience below.

Species interactions are often generalized. If some part-
ner species are lost via interaction disturbance, species able
to interact with many partners should be less affected than
species reliant upon more specialized associations. Importantly,
the quality of mutualistic interaction can vary among part-
ners, so the loss of some of its partners may still impact a
given focal species. The level to which generalization confers
resilience to interaction disturbance will therefore depend on
which species are lost and the characteristics of the remaining
interactions.

Generalization is evident in a diversity of interaction types.
In many commensal interactions, for example, one species may
use any of a broad suite of potential partners for protection
from harsh conditions (e.g. nurse–plant relationships; Aparicio
et al. 2004) or from predation (e.g. camouflage decoration in
the decorator crab Libinia dubia) (Stachowicz & Hay 2000).
In mutualisms, floral traits such as wide, open flowers can
permit plants to be pollinated by a wide diversity of species
(Bosch et al. 1997). Small fruits or seeds that can be swallowed
by animals with varying gape widths foster seed dispersal by
a diversity of potential partners (McConkey & Drake 2002).
In protection mutualisms, production of unspecialized rewards
can lead to large assemblages of potential defenders (e.g. Ness
et al. 2006), assuring protection even after loss of a specific
partner; examples include ant-plant (Guimarães et al. 2006) and
sea anemone-fish mutualisms (Ollerton et al. 2007). Traits such
as generalist root morphology and mycorrhizal structure may
result in diverse plant and fungal partners within mycorrhizal
relationships, protecting both sides from mutualism disruption
(Moora et al. 2011).

Many predators, herbivores, or parasites can opportunisti-
cally use a variety of potential food items or host species.
For example, the California condor (Gymnogyps californianus)
likely once relied on now-extinct Pleistocene megafauna, but
now consumes livestock carcasses as a substantial portion of
its diet (Chamberlain et al. 2005). In urban areas of Califor-
nia, where native plants are scarce, native butterflies utilize
non-native host plants (Shapiro 2002); if this change enables
persistence of the butterflies over time in the face of disturbance
of their historic interactions, then such generality has, by our
definition, conferred resilience on butterfly populations.

Phenotypic plasticity can also reduce dependence on a partic-
ular interaction partner, enabling a species to shift from one part-
ner to another as relative availability of partners fluctuates. Thus,
plasticity may allow sequential shift between partners. The sun-
fish Lepomis humilis exhibits variable morphology depending
on the identity of arthropod prey present during the fish’s juve-
nile development, potentially permitting it to more efficiently
consume whatever prey is likely to be available later in its
life (Hegrenes 2001). Barnacles exhibit longer-feeding struc-
tures in more protected sites, permitting increased prey capture
where water flow is reduced (Marchinko 2003). Behaviorally,
prey switching could entail plasticity, for example, when it has
involved shifts between diurnal and nocturnal feeding in some
fish (Reebs 2002) and mammals (e.g. Pereira 2010), and from
terrestrial to arboreal habitats in tiger snakes (Notechis scutatus)
(e.g. Aubret & Shine 2008).

Plasticity may enable interactions to persist even when
availability of mutualists varies. The orchid Satyrium long-
icauda produces larger inflorescences when pollinators are
scarce, increasing inflorescence attractiveness (Harder & John-
son 2005). The coral Acropora millepora hosts various species
of symbiotic zooxanthellae in its tissues, but the dominant sym-
biont varies according to external environmental cues, leading
to different partnerships in warmer versus cooler water (Berkel-
mans & van Oppen 2006). The pollen of some plant species
can be transferred by wind or water in addition to animals
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Figure 3. Relationship between community-level (white circles) and interaction-level (gray circles) disturbance effects, resilience factors, and restoration
responses. Overlap between the circles indicates elements common to both community-level and interaction-level restoration (e.g. the presence of generalist
species may help to restore both community-level and interaction-level functions).

(e.g. Bernhardt et al. 2003). Many outcrossing plants are able
to reproduce by budding, clonal growth, or self-fertilization
(Holsinger 2000; Barringer 2007). Similarly, wind, water, and
gravity dispersal can reduce the dependence of some plant
species on seed-dispersing mutualists (Imbert & Ronce 2001).

Plant species that interact commensally with protective nurse
plants may be able to survive without a partner, for example, by
utilizing rock crevices for shelter (Peters et al. 2008). Animals
that use commensals for cover in extreme temperatures may
instead move underground during hot periods (Bortolus et al.
2002). Species such as chameleons (family, Chamaeleonidae)
can alter their coloration to blend in with rocks or other substrate
in response to a change in plant species (Stuart-Fox & Moussalli
2009).

Adaptive capacity may enable species to cope with inter-
actions that are unpredictable over time by evolving new
mechanisms that allow them to persist following interaction dis-
turbance (Kiers et al. 2010). For example, decorator crabs have
been shown to select different camouflage algae depending on
the environment in which they are found as a result of evolution-
ary divergence between populations (Stachowicz & Hay 2000).
Populations of the paperwhite, Narcissus papyraceus, display
different floral traits in different locations, consistent with pref-
erences of local pollinators (Pérez-Barrales et al. 2007). Loss
of large-bodied seed dispersers in Brazilian rain forests has
resulted in rapid selection for smaller fruit size in palms (Galetti
et al. 2013). Similarly, genetically-based differences in host
plant preference have arisen in herbivore populations following
changes in host plant availability (Singer & McBride 2010).

Like plasticity, evolution of new traits can sometimes
permit organisms to persist without interaction partners.
Self-compatibility, for example, has evolved within lineages
that were formerly obligately outcrossing, as in the case of Aster
furcatus (Reinartz & Les 1994). In some cases, evolutionary

changes such as these have occurred remarkably quickly (e.g.
within 30 years for Spartina; Sloop et al. 2009).

Of course, there is likely a phylogenetic signal in many of
the traits discussed here. Traits that confer generalization, for
example, may be common to many of the species in a given
lineage (Gómez et al. 2010). If traits related to resilience are
identified for particular species, other closely related species
may also exhibit such traits and could thus be similarly impor-
tant in restoration planning.

The Role of Interactions and Resilience
in Restoration: Case Studies

We have briefly explored traits linked to resilience following
interaction disturbance. We now bring this information into
the real world of restoration by very briefly describing two
case studies wherein resilience of interactions was fundamental
to restoration success. Although differing in ecosystem type
and source of disturbance, these illustrate the importance of
interactions to restoration. Furthermore, in each of these cases,
the interaction disturbance was significant and a straightforward
restoration to historical conditions is not possible. Restoration
efforts in one of these cases supported a shift to new partners
when historical partners were extinct and in the other case
supported persistence of native species in partial absence of
partners by manipulation of the abiotic environment. Species
traits linked to resilience enabled them to persist under such
changed conditions and bolstered the success of the restoration
efforts.

Endemic Hawaiian Lobeliads

Several of the endemic Hawaiian lobeliad plant species (fam-
ily, Campanulaceae) are critically endangered as a result of
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browsing by non-native species and widespread pollinator
extinction (van Riper et al. 1986). Efforts to restore lobeliad
populations and native plant communities include outplant-
ing into forest sites fenced to exclude exotic browsing mam-
mals (R. Robichaux 2014, University of Arizona, Tucson, AZ,
U.S.A., personal communication). Outplanting of lobeliads at
high-elevation sites with maximum diversity of remnant native
as well as non-native nectarivorous birds boosts redundancy
in the pollinator guild and elevates the probability of pollina-
tion (Aslan et al. 2014). Protection of remnant lobeliads from
non-native mammals enhances the structural diversity of forest
patches. In this system, therefore, restoration efforts have taken
advantage of the generality and plasticity of the focal plants
(i.e. their ability to partner with multiple pollinator species and
to grow across a wide elevational range) to directly ameliorate
interaction disturbance and to boost resilience.

Traits relevant to lobeliad restoration efforts: ability to part-
ner with multiple pollinators (generalization) and ability to grow
at multiple elevations (phenotypic plasticity).

Coral Reef Restoration

In coral reefs, two key guilds of interaction partners are those
that promote coral colonization and those that graze on macroal-
gae, which outcompete young corals (Fitz et al. 1983; Witten-
berg & Hunte 1992; Breitburg 1998). Given the importance of
grazing fish in reducing algal competitors for coral recruits,
rebuilding redundancy in the grazer guild (i.e. restoring mul-
tiple species that engage in grazing interactions) is an essential
component of coral reef restoration. Such restoration thus takes
into account generalization—by having multiple species within
a particular functional group—in active coral reef restoration
efforts.

Complex physical structures are also relevant to reef restora-
tion. Climate change and coral bleaching (which occurs due to
disrupted interspecific interactions within the corals themselves)
threaten coral reef ecosystem health (Hughes et al. 2003). Com-
plexity of the physical habitat boosts coral reef resistance to
bleaching (West & Salm 2003). Phenotypic plasticity of corals
can boost such complexity. Restoration activities may thus
include construction of habitat features that provide protection
and take advantage of the phenotypic plasticity of reef species
by inclusion of either corals with varying architectures or com-
plex and varying artificial substrates in reef restorations.

Traits relevant to coral reef restoration efforts: ability to
obtain key-grazing services from multiple fish species (general-
ization) and ability to obtain protection from diverse substrates
and materials (phenotypic plasticity).

Practical Restoration of Interactions, Leveraging
Inherent Resilience

Populations and processes that are resilient will tend to return
to their previous function following disturbance of interactions,
whereas those that exhibit less resilience may be propelled
into alternative stable states by interaction disturbance (Fig. 1).

The first step in interaction restoration must be identifying
interactions in which species at risk participate and determining
whether such species exhibit traits that might confer inherent
resilience to interaction disturbance. This goes beyond simply
knowing the species and its basic needs. For example, rather
than just identifying interactions the species participates in, this
requires understanding if there is a possibility for the species to
persist without those interactions or to switch to new partners
and how to facilitate such shifts. This may require research on
species of interest (e.g. to determine whether a bat-pollinated
plant can also receive pollination from insects if bats are no
longer present). Thus, a deeper understanding of how a given
interaction functions for a target species becomes necessary.
For each such species, a specific series of questions examining
relevant traits can be applied, guiding practitioners through a
decision tree that identifies these traits for restoration planning
(Fig. 2). The next step is to identify specific strategies that take
advantage of those resilience traits to improve restoration fol-
lowing disturbance of interactions (Fig. 3). State-and-transition
models permit desired conditions and potential pathways to
achieve them to be identified (Wilkinson et al. 2005). Restora-
tion efforts can, for example, maintain diverse successional
states across landscapes (Bengtsson et al. 2003) or reintroduce
specific functional groups such as pollinator-supporting plants
(Fig. 3; Wilkerson et al. 2014). Active community-scale restora-
tion prioritizes structurally complex habitats and diverse species
assemblages (Fischer et al. 2006). For interaction disturbance,
the same principles suggest that restoration activities that cre-
ate complex habitats could provide the necessary substrate for
diverse interactions (Fig. 3). Restoration activities informed by
resilience theory can engineer habitats and introduce species
with an eye to interaction recovery. This process has the poten-
tial to boost overall ecosystem function.

Once species with resilience traits are established via restora-
tion practices, network characteristics such as nestedness sug-
gest that those species, with their tendency to interact with
many partners, could form the backbone of a broader com-
munity of interactors that could also include more specialized
species. Thus, the concepts discussed here may provide guid-
ance to species selection in restoration plantings and introduc-
tions. Beginning with resilient species could permit ecological
functions to continue following interaction disturbance and, at
the same time, provide the interaction substrate upon which a
more diverse community can establish.
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